\(a,\dfrac{a+x}{axb^3}=\dfrac{a\left(a+x\right)}{a^2xb^3};\dfrac{b+x}{a^2xb^2}=\dfrac{b\left(b+x\right)}{a^2xb^3};\dfrac{b-a}{axb^2}=\dfrac{ab\left(b-a\right)}{a^2xb^3}\\ b,\dfrac{2x+1}{x^2-4ax+4a^2}=\dfrac{x\left(2x+1\right)}{x\left(x-2a\right)^2};\dfrac{x+2a}{x^2-2ax}=\dfrac{\left(x+2a\right)\left(x-2a\right)}{x\left(x-2a\right)^2}\\ c,\dfrac{a+x}{6x^2-ax-2a^2}=\dfrac{a+x}{\left(3x-2a\right)\left(2x+a\right)}=\dfrac{\left(a+x\right)\left(x+2a\right)}{\left(3x-2a\right)\left(2x+a\right)}\\ \dfrac{a-x}{3x^2+4ax-4a^2}=\dfrac{a-x}{\left(3x-2a\right)\left(x+2a\right)}=\dfrac{\left(a-x\right)\left(2x+a\right)}{\left(3x-2a\right)\left(x+2a\right)\left(2x+a\right)}\)