Bài 5:
\(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\) (*) (đk \(7\le x\le9\))
Vs a,b >0 có:\(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\)(tự CM nha)
Dấu "=" xảy ra <=> a=b
Áp dụng bđt trên có:
\(\sqrt{x-7}+\sqrt{9-x}\le2\sqrt{\frac{x-7+9-x}{2}}=2\sqrt{1}=2\)(1)
Có x2-16x+66=(x2-16x+64)+2=(x-8)2+2\(\ge2\)
=> x2-16x+66 \(\ge2\) (2)
Từ (1),(2).Dấu "=" xảy ra<=> \(\left\{{}\begin{matrix}x-7=9-x\\x-8=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x=16\\x=8\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=8\\x=8\end{matrix}\right.\)<=> x=8( tm pt (*))
Vậy pt (*) có nghiệm x=8