| \(2x-1\) | = | \(-5x-2\) |
⇌ \(2x-1\) = \(\pm\left(-5x-2\right)\)
⇒ \(\left[{}\begin{matrix}2x-1=-5x-2\\2x-1=5x+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{-1}{7}\\x=\frac{-1}{3}\end{matrix}\right.\)
→ S = \(\left\{\frac{-1}{7};\frac{-1}{3}\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=-5x-2\\2x-1=5x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}7x=-1\\3x=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{7}\\x=-1\end{matrix}\right.\)