\(\left(\dfrac{1}{8}\right)^9\cdot8^9-\left(\dfrac{3}{4}-2x\right)^2=\dfrac{41}{9}-\dfrac{72^2}{36^2}\\ \Rightarrow\left(\dfrac{1}{8}\cdot8\right)^9-\left(\dfrac{3}{4}-2x\right)^2=\dfrac{41}{9}-\left(\dfrac{72}{36}\right)^2\\ \Rightarrow1^9-\left(\dfrac{3}{4}-2x\right)^2=\dfrac{41}{9}-2^2=\dfrac{5}{9}\\ \Rightarrow\left(\dfrac{3}{4}-2x\right)^2=1-\dfrac{5}{9}=\dfrac{4}{9}\\ \Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}-2x=\dfrac{2}{3}\\2x-\dfrac{3}{4}=\dfrac{2}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{12}\\2x=\dfrac{17}{12}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{24}\\x=\dfrac{17}{24}\end{matrix}\right.\)