Cho hình chữ Nhật ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Gọi P là giao điểm của ĂN và DM, Q là giao điểm của BN và Cm
a) tứ giác AMIN là hình gì? Vì sao
b) chứng minh tứ giác MNPQ là hình bình hành
Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD
a) Tứ giác DEBF là hình gì ? Vì sao ?
b) Chứng minh rằng các đường thẳng AC, BD, EF cùng cắt nhau tại một điểm
c) Gọi giao điểm của AC với DE và BF theo thứ tứ là M và N. Chứng minh rằng tứ giác EMFN là hình bình hành
Bài 21: Tam giác ABC cân tại A, trung tuyến AM. I là trung điểm của AC, D là điểm đối xứng của M qua I, K là điểm đối xứng của D qua C. a/ Chứng minh tứ giác AMCD là hình chữ nhật. b/ Chứng minh tứ giác ABMD là hình bình hành. c/ Gọi O là trung điểm của MC. Chứng minh A, O, K thẳng hàng. d/ Tìm thêm điều kiện của tam giác ABC để tứ giác AMCD là hình vuông.
Bài 2. Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm AB và CD.
a/ Chứng minh tứ giác AMCN là hình bình hành
b/ AN và CM cắt BD theo thứ tự tại E và F. Chứng minh DE = EF = FB
c/ Tìm điều kiện của hình bình hành ABCD để tứ giác MENF là hình chữ nhật
Cho tam giác ABC vuông tại B (BA<BC). Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD=MB.
a) Chứng minh tứ giác BADC là hình chữ nhật.
b) Gọi E là điểm đối xứng của B qua A. Chứng minh tứ giác AEDC là hình bình hành.
c) EM cắt AD tại K. Chứng minh BC=3AK
Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại Mvà N. Chứng minh rằng:
a) Tứ giác AKCI là hình bình hành.
b) DM = MN = NB.
c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.
Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.
a, Tứ giác AEDF là hình gì? Vì sao?
b, Chứng minh: A đối xứng với C qua F.
c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.
cho tứ giác ABCD gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA.
a) chứng minh tứ giác EFGH là hình bình hành
b) Gọi O là trung điểm EG, chứng minh F đối xứng H qua O
c) các đường chéo AC, BD, của tứ giác ABCD có điều kiện tứ giác EFGH là hình chữ nhật
Cho tam giác ABC cân tại A có đường cao AH và M là trung điểm của AB, N là trung điểm của AC. Gọi D là điểm đối xứng của H qua M. a) Chứng minh tứ giác AHBD là hình chữ nhật b) tia hn cắt tia da tại k chứng minh a là trung điểm của kd