Mk cần gấp lắm mấy bạn ơi :
Câu 1 : Tìm các stn a và b , biết ab = 2400 và BCNN(a , b ) = 120
Câu 2 :Biết 2a + 3b chia hết cho 25 . Chứng minh 9a + 6b chia hết cho 15
Câu 3 : Tìm stn nhỏ nhất có 4 chữ số biết 3n + 5 và 5n +4 không là 2 số nguyên tố cùng nhau
Câu 4 : Tìm stn n sao cho ( n +1 ) chia hết cho (2n - 3 )
Help me , mk cần gấp , mai mk đi thi rồi
Câu 4:
Giải:
Ta có:
\(n+1⋮2n-3\)
\(\Rightarrow2\left(n+1\right)⋮2n-3\)
\(\Rightarrow2n+2⋮2n-3\)
\(\Rightarrow\left(2n-3\right)+5⋮2n-3\)
\(\Rightarrow5⋮2n-3\)
\(\Rightarrow2n-3\in\left\{1;5\right\}\)
+) \(2n-3=1\Rightarrow n=2\)
+) \(2n-3=5\Rightarrow n=4\)
Vậy \(n\in\left\{2;4\right\}\)
*Lưu ý: còn trường hợp n = 1 nữa nhưng khi đó tỉ 2n - 3 = -1. Bạn lấy số đó thì thay vào.
1)Ta có:[a,b].(a,b)=a.b
120.(a,b)=2400
(a,b)=20
Đặt a=20k,b=20m(ƯCLN(k,m)=1,\(k,m\in N\))
\(\Rightarrow20k\cdot20m=2400\)
\(400\cdot k\cdot m=2400\)
\(k\cdot m=6\)
Mà ƯCLN(k,m)=1,\(k,m\in N\)
Ta có bảng giá trị sau:
k | 2 | 3 | 1 | 6 |
m | 3 | 2 | 6 | 1 |
a | 40 | 60 | 20 | 120 |
b | 60 | 40 | 120 | 20 |
Mà a,b là SNT\(\Rightarrow\)a,b không tìm được
2)Mình nghĩ đề đúng là cho 2a+3b chia hết cho 15
Ta có:\(2a+3b⋮15\Rightarrow3\left(2a+3b\right)⋮15\Rightarrow6a+9b⋮15\)
Ta có:\(9a+6b+6a+9b=15a+15b=15\left(a+b\right)⋮15\)
Mà \(6a+9b⋮15\Rightarrow9a+6b⋮15\left(đpcm\right)\)
Nguyễn Huy Thắng
Nguyễn Huy Tú
Trần Việt Linh
Phạm Nguyễn Tất Đạt
soyeon_Tiểubàng giải
Trương Hồng Hạnh
Nguyễn Thị Thu An
Trần Quỳnh Mai
Silver bullet
Hoàng Lê Bảo Ngọc
Nguyễn Phương HÀ
Lê Nguyên Hạo
Phương An
Võ Đông Anh Tuấn
Còn ai mà bt làm thì lm hộ