Các mặt phẳng \(\left( E \right)\), \(\left( F \right)\), \(\left( H \right)\), \(\left( G \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_{\left( E \right)}}} = \left( {2; - 1;8} \right)\), \(\overrightarrow {{n_{\left( F \right)}}} = \left( {8; - 4;32} \right)\), \(\overrightarrow {{n_{\left( H \right)}}} = \left( {6; - 3;24} \right)\), \(\overrightarrow {{n_{\left( G \right)}}} = \left( {10; - 5;41} \right)\).
Ta có \(\overrightarrow {{n_{\left( F \right)}}} = 4\overrightarrow {{n_{\left( E \right)}}} \), nhưng \(7 \ne 4.1\). Vậy \(\left( E \right)\parallel \left( F \right)\).
Ta có \(\overrightarrow {{n_{\left( H \right)}}} = 3\overrightarrow {{n_{\left( E \right)}}} \) và \(3 = 3.1\). Vậy \(\left( E \right) \equiv \left( H \right)\).
Ta có \(\frac{2}{{10}} = \frac{{ - 1}}{{ - 5}} \ne \frac{8}{{41}}\), suy ra \(\overrightarrow {{n_{\left( E \right)}}} \) và \(\overrightarrow {{n_{\left( G \right)}}} \) không cùng phương. Vậy \(\left( E \right)\) cắt \(\left( G \right)\).