\(Z_{C1}=1/\omega.C_1=100\Omega\)
\(Z_{C1}=1/\omega.C_2=300\Omega\)
Do \(I_1=I_2\) \(\Rightarrow Z_1=Z_2\)
\(\Rightarrow Z_L-Z_{C1}=Z_{C2}-Z_L\)
\(\Rightarrow Z_L=(Z_{C1}+Z_{C2})/2=200\Omega\)
Tổng trở \(Z=\sqrt{R^2+(200-100)^2}=100\sqrt 2\)
\(\Rightarrow R = 100\Omega\)
Khi C = C1 thì \(\tan\varphi=\dfrac{Z_L-Z_{C1}}{R}=\dfrac{200-100}{100}=1\)
\(\Rightarrow \varphi_{u/i}=\dfrac{\pi}{4}\)
\(\Rightarrow \varphi_1=\varphi_u-\dfrac{\pi}{4}=-\dfrac{\pi}{4}\)
Vậy biểu thức cường độ dòng điện là: \(i=\sqrt 2\cos(100\pi t-\dfrac{\pi}{4})(A)\)