a, \(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9,6\left(cm\right)\\ \sin ABC=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\Rightarrow\widehat{ABC}\approx53^0\)
b, Áp dụng HTL: \(AN\cdot AC=AH^2\)
Áp dụng PTG: \(AH^2=AC^2-HC^2\)
Suy ra đpcm
c, Vì \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\) nên AMHN là hcn
Do đó AH=MN
Áp dụng HTL: \(\left\{{}\begin{matrix}AN\cdot NC=HN^2\\AM\cdot MB=HM^2\end{matrix}\right.\)
Áp dụng PTG: \(HN^2+HM^2=MN^2=AH^2\)
Suy ra đpcm