\(= \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt[3]{{\dfrac{1}{{{x^6}}} + \dfrac{1}{{{x^2}}} + 1}}}}{{ - \sqrt {1 + \dfrac{1}{x} + \dfrac{1}{{{x^4}}}} }} = - 1\)
\(= \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt[3]{{\dfrac{1}{{{x^6}}} + \dfrac{1}{{{x^2}}} + 1}}}}{{ - \sqrt {1 + \dfrac{1}{x} + \dfrac{1}{{{x^4}}}} }} = - 1\)
a) lim \(\dfrac{x\sqrt{x^2+1}-2x+1}{^3\sqrt{2x^3-2}+1}\)
x-> -∞
b) lim \(\dfrac{\left(2x+1\right)^3\left(x+2\right)^4}{\left(3-2x\right)^7}\)
x-> -∞
c) lim \(\dfrac{\sqrt{4x^2+x}+^3\sqrt{8x^3+x-1}}{^4\sqrt{x^4+3}}\)
x-> +∞
a) lim ( \(\sqrt{x^2-x+1}-\sqrt{x^2+x+1}\)
x-> +∞
b) lim \(\dfrac{\sqrt{4x+1}-3}{x^2-4}\)
x-> 2
c) lim \(\dfrac{\sqrt{2x+5}-1}{x^2-4}\)
x-> -2
Tìm giơi han:
a) lim (x-> \(+\infty\)) \(\dfrac{\sqrt{x^2+1}+x}{5-2x}\)
b) lim (x->4) \(\left(\dfrac{\sqrt{15x+4}-\sqrt{x-3}-3}{-x+4}\right)\)
sorry, e k bt nhâp lim ..
a) lim \(\dfrac{2x-\sqrt{3x^2+2}}{5x+\sqrt{x^2+2}}\)
x-> +∞
b) lim \(\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
x-> ∞
lim \(\dfrac{^3\sqrt{x+1}-1}{^{^4\sqrt{2x+1}-1}}\)
x-> 1
lim x\(\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
x-> +∞
tìm gioi han \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1.2x+1}.\sqrt[3]{2.3x+1}.\sqrt[4]{3.4x+1}...\sqrt[2018]{2017.2018x+1}}{x}\)
a) lim \(\dfrac{3x^4-2x^5}{5x^4+x+4}\)
x-> -∞
b) lim \(\dfrac{x-1}{\sqrt{x^2-1}}\)
x-> +∞
lim \(\dfrac{\sqrt{3\left(x+1\right)}-3}{x-\sqrt{x+2}}\)
x-> 2