ta có :
\(\left(\frac{x-4\sqrt{x}+4}{\sqrt{x}+2}+\frac{x-4}{2-\sqrt{x}}\right)+\sqrt{x}\)
=\(\left(\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+2}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\right)+\sqrt{x}\)
=\(\left(\frac{\left(\sqrt{x}-2\right)^2-\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}\right)+\sqrt{x}\)
=\(-\frac{8\sqrt{x}}{\sqrt{x}+2}+\sqrt{x}\)
=\(\frac{x+2\sqrt{x}-8\sqrt{x}}{\sqrt{x}+2}\)
=\(\sqrt{x}\left(\frac{\sqrt{x}-6}{\sqrt{x}+2}\right)\)
\(\left(\frac{x-4\sqrt{x}+4}{\sqrt{x}+2}+\frac{x-4}{2-\sqrt{x}}\right)+\sqrt{x}\)
=>\(\left(\frac{x-4\sqrt{x}+4}{\sqrt{x}+2}+\frac{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right)}{-\left(\sqrt{x}-2\right)}\right)+\sqrt{x}\)
=>(\(\frac{x-4\sqrt{x}+4}{\sqrt{x}+2}-\left(\sqrt{x}+2\right)\))+\(\sqrt{x}\)