\(\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(1-\frac{2}{x+1}\right)^2\) đk: \(x\ge0;x\ne1\)
=\(\left[\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\) . \(\left(\frac{x+1}{x+1}-\frac{2}{x+1}\right)^2\)
=\(\frac{2\left(x+1\right)}{x-1}.\left(\frac{x-1}{x+1}\right)^2\)
=\(\frac{2x-2}{x+1}\)