Giải:
Ta có: \(\left\{{}\begin{matrix}\sqrt{3}x-y=1\\x+y=\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\x+y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow x+\sqrt{3}x-1=\sqrt{3}\)
\(\Leftrightarrow x\left(1+\sqrt{3}\right)-\left(1+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\sqrt{3}\right)=0\)
\(\Leftrightarrow x-1=0\) ( do \(1+\sqrt{3}>0\) )
\(\Leftrightarrow x=1\)
\(\Leftrightarrow y=\sqrt{3}-1\)
Vậy...