\(\left\{{}\begin{matrix}\left(x-1\right)\left(y+3\right)=xy+27\\\left(x-2\right)\left(y+1\right)-xy=8\end{matrix}\right.\)
ai giúp với
1.\(\left\{{}\begin{matrix}x^2+y^2-x-y=102\\xy+x+y=69\end{matrix}\right.\)
2.\(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^3+y^3=xy\end{matrix}\right.\)
Giải hpt
a)\(\left\{{}\begin{matrix}x+y+z=1\\x+2y+4z=8\\x+3y+9z=27\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}x^2+y^2+x+y=62\\xy=24\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}\dfrac{3}{2x+y}+z=2\\2y-3z=4\\\dfrac{2}{2x+y}-y=\dfrac{3}{2}\end{matrix}\right.\)
Giải hệ pt:
\(\left\{{}\begin{matrix}\left(x-1\right)\left(y+3\right)=xy+27\\\left(x-2\right)\left(y+1\right)=xy+8\end{matrix}\right.\)
1)\(\left\{{}\begin{matrix}x^2-y^2-2x+2y=0\\x^2-3xy+5y^2-3=0\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{1-y}=1\\\frac{1}{x-1}-\frac{1}{y}=2\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x^2-4x+3=0\\x^2+xy+y^2=1\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^2+y^2+x+y=2\\\left(x+1\right)^2-\left(y+2\right)^2=0\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x^2-xy+y-7=0\\x^2+xy-2y=4\left(x-1\right)\end{matrix}\right.\)
giải các hệ phương trình sau:
\(\left\{{}\begin{matrix}2x+\dfrac{Y}{\sqrt{4X^{2^{ }}+1}+2X}+Y^{2^{ }}=0\\4\left(\dfrac{X}{Y}\right)^{2^{ }}+2\sqrt{4X^{2^{ }}+1}+Y^{2^{ }}=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+z=6\\xy+yz+zx=11\\xyz=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^{3^{ }}-y^{3^{ }}-15y-14=3\left(2y^{2^{ }}-x\right)\\4x^{3^{ }}+6xy+15x+3=0\end{matrix}\right.\)
giải hệ phương trình \(\left\{{}\begin{matrix}x^2=xy+1\\y^2=3\left(y-2x\right)\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{xy-6}=12-y^2\\xy=3+x^2\end{matrix}\right.\)