Giải hệ phương trình đối xứng loại 1
1 , \(\left\{{}\begin{matrix}x^3+xy+y^3=3\\2x+xy+2y=-3\end{matrix}\right.\)
2 , \(\left\{{}\begin{matrix}x+y+2xy=2\\x^3+y^3=8\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}x^3-y^3=7\\xy\left(x-y\right)=2\end{matrix}\right.\)
4 \(\left\{{}\begin{matrix}x+y+2xy=5\\x^2+y^2+xy=7\end{matrix}\right.\)
giúp mình với mình đang cần gấp
\(\left\{{}\begin{matrix}x^2-xy+y^2+x-2y=0\\2x-xy+y=2\end{matrix}\right.\)
giải hệ pt sau
\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
1.\(\left\{{}\begin{matrix}2x^2=y+\dfrac{1}{y^2}\\2y^2=x+\dfrac{1}{x^2}\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+\sqrt{y-1}=\dfrac{5}{2}\\2y+\sqrt{x-1}=\dfrac{5}{2}\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x^2y^2=2x^2+y\\xy^2+2x^2=1\end{matrix}\right.\)
Giải hệ phương trình
a, \(\left\{{}\begin{matrix}\sqrt[4]{x^3-1}+\sqrt{x}=3\\x^2+y^3=82\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{x+\frac{1}{y}}+\sqrt{x+y-3}=3\\2x+y+\frac{1}{y}=8\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\frac{3}{x^2}=2x+y\\\frac{3}{y^2}=2y+x\end{matrix}\right.\)
giải HPT:
1) \(\left\{{}\begin{matrix}2\sqrt{2x+y}=3-2x-y\\x^2-2xy-y^2=2\end{matrix}\right.\)
tìm m để hệ phương trình \(\left\{{}\begin{matrix}x+y+xy=m+1\\x^2y+y^2x=3m-5\end{matrix}\right.\) có 1 no duy nhất
\(\left\{{}\begin{matrix}x^3=2x+y\\y^3=2y+x\end{matrix}\right.\)