(1+1/1.3)...(1+1/2016.2018)
=(1.3+1/1.3)...(2016.2018+1/2016.2018)
=(2.2/1.3)...(2017.2017/2016.2018)
=(2...2017).(2..2017)/(1.2.....2016).(3...2018)
=2017.2/2018
=2017.2/1006.2
=2017/1006
thông cảm nha :))
(1+1/1.3)...(1+1/2016.2018)
=(1.3+1/1.3)...(2016.2018+1/2016.2018)
=(2.2/1.3)...(2017.2017/2016.2018)
=(2...2017).(2..2017)/(1.2.....2016).(3...2018)
=2017.2/2018
=2017.2/1006.2
=2017/1006
thông cảm nha :))
Tính
A=\(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)
B=\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)........\left(1-\dfrac{1}{10^2}\right)\)
C=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+..........+\dfrac{1}{2^{2016}}\)
Giúp mk nha!Cảm ơn rất nhìu!
Chứng minh rằng :
a)\(\dfrac{1}{x}\)-\(\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)
b)\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\)
c)\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
- Tính nhanh tổng sau:
\(\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{3}-1\right):\left(\dfrac{1}{4}-1\right):\left(\dfrac{1}{5}-1\right)...:\left(\dfrac{1}{50}-1\right)\)
\(\left(\dfrac{1}{16}-1\right)\left(\dfrac{1}{25}-1\right)\left(\dfrac{1}{36}-1\right)...\left(\dfrac{1}{10000}-1\right)\)
T=\(\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{8}\right)+...+\left(1-\dfrac{1}{512}\right)+\left(1-\dfrac{1}{1024}\right)\)
GIÚP MK VỚI
Tính
a) \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).....\left(1-\dfrac{1}{2012}\right)\)
Tính:
\(A=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)
tính
\(B=\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{6}\right).\left(1-\dfrac{1}{10}\right).........\left(1-\dfrac{1}{780}\right)\)
Tính S=\(\left(1-\dfrac{1}{1+2}\right).\left(1-\dfrac{1}{1+2+3}\right).\left(1-\dfrac{1}{1+2+3+4}\right).....\left(1-\dfrac{1}{1+2+...+2014}\right)\)