e nghĩ a nên nhờ thầy phynit sẽ tốt hơn, vì e ko bk lm a ạ
chú ơi mờ quáaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa My uncle shop fuzzy
e nghĩ a nên nhờ thầy phynit sẽ tốt hơn, vì e ko bk lm a ạ
chú ơi mờ quáaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa My uncle shop fuzzy
Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng a, cạnh bên bằng \(\frac{a\sqrt{5}}{2}\).Gọi O là tâm hình vuông ABCD và M là trung điểm SC.
a) CM (MBD) vuông góc với (SAC)
b)Góc (SA,(ABCD))=?
c)Góc ((MBD),(ABCD))=?
d)Góc ((SAB),(ABCD))=?
mọi người giúp em câu b với c nhé, cảm ơn mọi người nhiều
Trong không gian cho hai hình bình hành ABCD và AB'C'D' chỉ có chung nhau một điểm A. Chứng minh rằng các vectơ \(\overrightarrow{BB'},\overrightarrow{CC'},\overrightarrow{DD'}\) đồng phẳng ?
Trong không gian cho điểm O và bốn điểm A, B, C, D phân biệt và không thẳng hàng. Chứng minh rằng điều kiện cần và đủ để bốn điểm A, B, C, D tạo thành một hình bình hành là :
\(\overrightarrow{AO}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
Mọi người ơi giúp mình với, mình ngồi cả ngày ko làm được :(( ( không xài meneliut nha )
Trong không gian cho ba điểm A B C , , cố định không thẳng hàng, tìm tập hợp điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Gọi M và N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm của đoạn thẳng MN và P là một điểm bất kì trong không gian. Chứng minh :
a) \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
b) \(\overrightarrow{PI}=\dfrac{1}{4}\left(\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD}\right)\)
Trên mặt phẳng \(\left(\alpha\right)\) cho hình bình hành \(A_1B_1C_1D_1\). Về một phía đối với mặt phẳng \(\left(\alpha\right)\) ta dựng hình bình hành \(A_2B_2C_2D_2\). Trên các đoạn \(A_1A_2,B_1B_2,C_1C_2,D_1D_2\) ta lần lượt lấy các điểm A, B, C, D sao cho :
\(\dfrac{AA_1}{AA_2}=\dfrac{BB_1}{BB_2}=\dfrac{CC_1}{CC_2}=\dfrac{DD_1}{DD_2}=3\)
Chứng minh rằng tứ giác ABCD là hình bình hành ?
Cho hình lăng trị tứ giác ABC.A'B'C'D'. Mặt phẳng (P) cắt các cạnh bên AA', BB',CC', DD' lần lượt tại I, K, L, M. Xét các vectơ có các điểm đầu là các điểm I, K, L, M và có các điểm cuối là các đỉnh của lăng trụ. Hãy chỉ ra các vectơ :
a) Cùng phương với \(\overrightarrow{IA}\)
b) Cùng hướng với \(\overrightarrow{IA}\)
c) Ngược hướng với \(\overrightarrow{IA}\)
Cho hình chóp tứ giác S.ABCD có đáy là một hình vuông, độ dài tất cả các cạnh của hình chóp đã cho bằng a. Tính tích vô hướng \(\overrightarrow{SA}.\overrightarrow{SC}\)