Khúc của của một con đường có dạng hình parabol, điềm đầu vào khúc cua là A, điểm cuối là B, khoảng cách AB = 400 m. Đỉnh parabol (P) của khúc của cách đường thẳng ABmột khoảng 20 m và cách đều A, B (H.7.34).
a) Lập phương trình chính tắc của (P), với 1 đơn vị đo trong mặt phẳng toạ độ tương ứng 1 m trên thực tế.
b) Lập phương trình chính tắc của (P), với 1 đơn vị đo trong mặt phẳng toạ độ tương ứng 1 km trên thực tế.
Phương trình chính tắc của parabol (P) có dạng \({y^2} = 2px\left( {p > 0} \right)\).
a) Khi 1 đơn vị đo trong mặt phẳng tọa độ ứng với 1m trên thực tế, ta có \(B\left( {20;200} \right)\).
Thay tọa độ điểm B vào phương trình của (P) ta được \({200^2} = 2p.20 \Leftrightarrow p = 1000\).
Vậy phương trình chính tắc của (P) là: \({y^2} = 2000x\).
b) Khi 1 đơn vị đo trong mặt phẳng tọa độ ứng với 1km trên thực tế, ta có \(B\left( {0,02;0,2} \right)\).
Tương tự, ta có phương trình chính tắc của (P) là \({y^2} = 2x\).