Khi oto đang chuyển động với vận tốc 15m/s trên một đoạn đường thẳng thì người lái xe hãm phanh cho ô tô chuyển động chậm dần đều. Sau khi chạy thêm 126m thì vận tốc của ô tô chỉ còn 10m/s tính a. Gia tốc của ô tô b. Tính thời giang ô tô chạy thêm được 125m kể từ khi bắt đầu hãm phanh c. Sau bao lâu ô tô dừng lại? Tính quãng đường ô tô đi được trong thời giang đó d. Kể từ lúc hãm phanh, xe mất bao lâu để đi thêm 100m và vận tốc lúc nầy là bao nhiêu
a)Vật chuyển động chậm dần đều.
Gia tốc vật: \(v^2-v_0^2=2aS\)
\(\Rightarrow a=\dfrac{v^2-v_0^2}{2S}=\dfrac{10^2-15^2}{2\cdot126}=-\dfrac{125}{252}\approx-0,5m/s^2\)
b)Thời gian ô tô chạy thêm được 125m kể từ khi hãm phanh.
\(S=v_0t+\dfrac{1}{2}at^2\Rightarrow126=15t+\dfrac{1}{2}\cdot\left(-\dfrac{125}{252}\right)\cdot t^2\)
\(\Rightarrow\left[{}\begin{matrix}t=50,4s\\t=10,08s\end{matrix}\right.\)
c)Thời gian để ô tô dừng lại: \(v=v_0+at\)
\(\Rightarrow0=15+\left(-\dfrac{125}{252}\right)\cdot t\Rightarrow t=30,24s\)
d)Thời gian xe đi thêm 100m là:
\(S'=v_0t+\dfrac{1}{2}at^2\Rightarrow100=15t+\dfrac{1}{2}\cdot\left(-\dfrac{125}{252}\right)\cdot t^2\)
\(\Rightarrow\left[{}\begin{matrix}t=52,85s\\t=7,63s\end{matrix}\right.\)
Vận tốc lúc này: \(v'^2-v_0^2=2aS'\)
\(\Rightarrow v'=\sqrt{2aS+v_0^2}=\sqrt{2\cdot\left(-\dfrac{125}{252}\right)\cdot100+15^2}\approx11,22m/s\)
Chọn trục tọa độ trùng với quỹ đạo chuyển động thẳng của ô tô, chiều dương của trục hướng theo chiều chuyển động. Chọn mốc thời gian là lúc ô tô bắt đầu hãm phanh.
Theo công thức liên hệ giữa quãng đường đi được với vận tốc và gia tốc trong chuyển động thẳng chậm dần đều:
= 2as
Ta suy ra công thức tính gia tốc của ô tô:
Dấu – của gia tốc a chứng tỏ ô tô chuyển động thẳng chậm dần đều có chiều dương đã chọn trên trục tọa độ, tức là ngược chiều với vận tốc ban đầu