1) \(\left\{{}\begin{matrix}p+e+n=34\\p+e=n+10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2p+n=34\\2p=n+10\end{matrix}\right.\)
\(\Rightarrow2n+10=34\Rightarrow n=12\)
\(\Rightarrow p=e=\dfrac{n+10}{2}=11\)
2) \(\left\{{}\begin{matrix}p+e+n=126\\n=e+12\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2p+n=126\\n=p+12\end{matrix}\right.\)
\(\Rightarrow3p+12=126\Rightarrow p=38\)
\(\Rightarrow\left\{{}\begin{matrix}e=p=38\\n=p+12=50\end{matrix}\right.\)