a, x3-x2-4x2+8x-4
=x3-4x2+4x-x2+4x-4
=x(x2-4x+4)-(x2-4x+4)
=(x2-4x+4)(x-1)
=(x-2)2(x-1)
b, 4x2-25-(2x-5)(2x+7)
=4x2-52-(2x-5)(2x+7)
=(2x-5)(2x+5)-(2x-5)(2x+7)
=(2x-5)[(2x+5)-(2x+7)]
=(2x-5)[2x+5-2x-7]
=-2(2x-5)
c, x2-4xy+4y2-9z2
=(x2+4xy+4y2)-9z2
=(x+2y)2-(3z2)
=(x+2y+3z)(x+2y-3z)
d, x2-7x+6
=x2-6x-x+6
=x(x-6)-(x-6)
=(x-6)(x-1)
e, 4x2+4x-3
=4x2+6x-2x-3
=2x(2x+3)-(2x+3)
=(2x-1)(2x+3)
f, 4x2+4x2y2-8y4
=4(x2+x2y2-2y4)
g, (x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1 ta có:
t(t+1)-12=t2+t-12
=t2-3t+4t-12
=t(t-3)+4(t-3)
=(t+4)(t-3)
=(x2+x+1+4)(x2+x+1-3)
=(x2+x+5)(x2+x-2)
=(x2+x+5)[x2+2x-x-2]
=(x2+x+5)[x(x+2)-(x+2)]
=(x2+x+5)(x-1)(x+2)
h, 4x2y2-(x2+y2-z2)2
=(2xy)2-(x2+y2-z2)2
=(2xy+x2+y2-z2)(z2-y2-x2+2xy)
=(xz+yz-z2+xy+y2-yz+x2+xy-xz)(-xz+yz+z2-xy-y2-yz-x2+xy+xz)
=[z(x+y-z)+y(x+y-z)+x(x+y-z)][z(z+y-x)-y(z+y-x)+x(z+y-x)]
=(x+y-z)(x+y+z)(z-y+x)(z+y-x)
i,x3-8-(x-2)(x+4)
=x3-23-(x-2)(x+4)
=(x-2)(x2+2x+4)-(x-2)(x+4)
=(x-2)[(x2+2x+4)-(x+4)]
=(x-2)[x2+2x+4-x-4]
=(x-2)[x2+x]
=x(x+1)(x+2)