Bài 4: Hai mặt phẳng vuông góc

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O và có cạnh SA vuông góc với mặt phẳng (ABCD). Giả sử \(\left(\alpha\right)\) là mặt phẳng đi qua A và vuông góc với cạnh SC, \(\left(\alpha\right)\) cắt SC tại I

a) Xác định giao điểm K của SO với phẳng \(\left(\alpha\right)\)

b) Chứng minh mặt phẳng (SBD) vuông góc với mặt phẳng (SAC) và BD // \(\left(\alpha\right)\)

c) Xác định giao tuyến d của mặt phẳng (SBD) và mặt phẳng \(\left(\alpha\right)\). Tìm thiết diện cắt hình chóp S.ABCD bởi mặt phẳng \(\left(\alpha\right)\)

Nguyen Thuy Hoa
26 tháng 5 2017 lúc 11:48

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Cao Hạ Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Nguyệt
Xem chi tiết