ĐK: x\(\ge\)2
\(E=\dfrac{\sqrt{x+2+2\sqrt{\left(x+2\right)\left(x-2\right)}+x-2}}{\sqrt{x^2-4}+x+2}\)
\(E=\dfrac{\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}}{\sqrt{x^2-4}+x+2}\)
\(E=\dfrac{\left|\sqrt{x+2}+\sqrt{x-2}\right|}{\sqrt{x^2-4}+x+2}\)
\(E=\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\left(x+2\right)+\sqrt{\left(x+2\right)\left(\sqrt{x-2}\right)}}\)
\(E=\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x+2}\left(\sqrt{x+2}+\sqrt{x-2}\right)}\)
\(E=\dfrac{1}{\sqrt{x+2}}\)
Thế x=2(\(\sqrt{3}+1\))=\(2\sqrt{3}+2\) vào E:
=>\(E=\dfrac{1}{\sqrt{2\sqrt{3}+4}}\)
=>\(E=\dfrac{1}{\sqrt{3+2\sqrt{3}+1}}=\dfrac{1}{\sqrt{\left(\sqrt{3}+1\right)^2}}=\dfrac{1}{\sqrt{3}+1}\)