+) Ta có: \(0,0000 < d = 0,0001 < 0,001\) nên hàng thấp nhất mà d nhỏ hơn một đơn vị của hàng đó là hàng phần nghìn.
+) Vậy ta quy tròn a đến hàng phần nghìn. Số quy tròn của a là: 28,416.
+) Ta có: \(0,0000 < d = 0,0001 < 0,001\) nên hàng thấp nhất mà d nhỏ hơn một đơn vị của hàng đó là hàng phần nghìn.
+) Vậy ta quy tròn a đến hàng phần nghìn. Số quy tròn của a là: 28,416.
Cho số gần đúng a = 1,2345 với độ chính xác 0,005. Hãy đọc hai yêu cầu sau và cho biết hai yêu cầu đó khác nhau như thế nào:
a) Quy tròn số gần đúng a = 1,2345 đến hàng phần trăm
b) Quy tròn số gần đúng a = 1,2345.
Quy tròn số – 3,2475 đến hàng phần trăm. Số gần đúng nhận được có độ chính xác là bao nhiêu?
Hãy tìm hiểu khối lượng của Trái Đất, Mặt Trời và viết kết quả dưới dạng số gần đúng.
Viết số quy tròn của mỗi số gần đúng sau với độ chính xác d
a) 30,2376 với d= 0,009.
b) 2,3512082 với d=0,0008.
Quy tròn số 3,141 đến hàng phần trăm rồi tính sai số tuyệt đối của số quy tròn.
Một bồn hoa có dạng hình tròn với bán kính là 0,8 m.
a) Viết công thức tính diện tích S của bồn hoa theo \(\pi \) và bán kính 0,8 m.
b) Khi tính diện tích của bồn hoa, bạn Ngân lấy một giá trị gần đúng của m là 3,1 và được kết quả là:
3,1.(0,8)2= 1,984 (\({m^2}\)).
Giá trị |S - 1,984| biểu diễn điều gì?
Ta đã biết 1 inch (kí hiệu là in) là 2,54 cm. Màn hình của một chiếc ti vi có dạng hình chữ nhật với độ dài đường chéo là 32 in, tỉ số giữa chiều dài và chiều rộng của màn hình là 16: 9. Tìm một giá trị gần đúng (theo đơn vị inch) của chiều dài màn hình ti vi và tìm sai số tương đối, độ chính xác của số gần đúng đó.
Các nhà thiên văn tính được thời gian để Trái Đất quay một vòng xung quanh Mặt Trời là 365 ngày \( \pm \frac{1}{4}\) ngày. Bạn Hùng tính thời gian đi bộ một vòng xung quanh sân vận động của trường khoảng 15 phút \( \pm 1\) phút. Trong hai phép đo trên, phép đo nào chính xác hơn?
Hãy ước lượng sai số tuyệt đối \({\Delta _{{S_1}}}\) ở Ví dụ 1.