Ta có
a) a - 5 \(\ge\) b - 5 ↔ a - 5 + 5 \(\geq\) b - 5 + 5 ↔ a \(\ge\) b
b) 15 + a \(\le\) 15 + b ↔ 15 + a - 15 \(\le\) 15 + b - 15 ↔ a \(\leq\) b
Ta có
a) a - 5 \(\ge\) b - 5 ↔ a - 5 + 5 \(\geq\) b - 5 + 5 ↔ a \(\ge\) b
b) 15 + a \(\le\) 15 + b ↔ 15 + a - 15 \(\le\) 15 + b - 15 ↔ a \(\leq\) b
Cho a, b là 2 số dương thỏa mãn a + b \(\le\) \(\dfrac{4}{5}\).
Chứng minh a + b + \(\dfrac{a+b}{ab}\) \(\ge\) \(\dfrac{29}{5}\)
Bài 1:cho 2 số nguyên.số thứ nhất chia 5 dư 1,số thứ 2 chia 5 dư 2.hỏi tổng các bình phương của 2 số này có chia hết cho 5 không? Giải thích?
bài 2: so sánh:
a) x^2 -20x+101 và 0
b) 4a^2 + 4a +2 và 0
bài 3:Tìm giá trị của x để cho giá trị của biểu thức là nhỏ nhất? tÌm giá trị nhỏ nhất đó
a) 4x^2 +12x+15
b) 9x^2 -6x+5
bài 4: Thực hiện:
a) ( a+b+c-d)(a+b-c+d)
b) (a-b-c+d)( a-b+c-d)
giải giúp mình vs,mk cần gấp lắm ạ,mk cảm ơn
cho \(0\le a\le2;0\le b\le2;0\le c\le2\) và a+b+c=3. Chứng minh a^2+b^2+c^2\(\le\)5
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
Chứng minh bất đẳng thức sau với a,b,c\(\ge\) 0
a)a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)\(\ge\) 0
b) a6+b6+c6\(\ge\) a5b+b5 c+c5a(a,b,c\(\ge\) 0)
1. N=k^4+2k^3-16k^2-2k+15 với k nguyên
Tìm điều kiện của k để N chia hết cho 16
2. cmr nếu 1/a+1/b+1/c=2 và a+b+c=abc
thì 1/a^2+1/b^2+1/c^2=2 với a,b,c>0
A=80.(3^4+1)(3^8+1)(3^16+1)(3^32+1) và B=3^64 So sánh A và B
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Rút gọn A và tìm tập xác định
b) Chứng minh \(A\le\frac{2}{3}\)
nếu \(a+b\ge1\) thì \(a^3+b^3\ge\frac{1}{4}\)