Giả thiết: ΔABC
Kết luận: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Giả thiết: ΔABC
Kết luận: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Phát biểu định lí về tổng ba góc của một tam giác, tính chất góc ngoài của tam giác ?
Các tính chất sau đây được suy ra trực tiếp từ định lí nào ?
a) Góc ngoài của một tam giác bằng tổng hai góc trong không kề với nó
b) Trong một tam giác vuông, hai góc nhọn phụ nhau
c) Trong một tam giác đều, các góc bằng nhau
d) Nếu một tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều
Các tính chất, sau đây được suy ra trực tiếp từ định lí nào ?
a) Góc ngoài của một tam giác bằng tổng hai góc trong không kề với nó.
b) Trong một tam giác vuông hai góc nhọn phụ nhau.
c) Trong một tam giác đều, các góc bằng nhau.
d) Nếu một tam giác có ba góc bằng nhau thì tam giác đo là tam giác đều.
cho tam giác DEF vuông tại D có DE=5cm,EF=13cm
a,tính độ dài cạnh DF
b,so sánh góc E và F
c,tia phân giác của góc F cắt DE tại N.kẻ NH vuông góc với EF.FD cắt HN tại K.chứng minh KN=NE
vẽ hình ghi giả thiết kết luận
Phát biểu định nghĩa tam giác cân, tính chất về góc của tam giác cân. Nêu các cách chứng minh một tam giác là tam giác cân ?
Phát biểu định nghĩa tam giác đều, tính chất về góc của tam giác đều. Nêu các cách chứng minh một tam giác là tam giác đều ?
Ba chiều cao của một tam giác tỉ lệ với các số 12, 15, 20.Hãy xác định dạng của tam giác đó
Dựa vào giả thiết và kết luận dưới đây, hãy vẽ hình và giải
GT: Δ ABC vuông tại A
AH⊥ BC
MC=CA (M ∈ BC)
AN=AH (N ∈ BA)
KL: a, ∠CAM=∠CMA
b, ∠CMA và ∠MAN phụ nhau
c, AN là tia phân giác ∠BAH
d, MN⊥AB
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ \(BH\perp AM\left(H\in AM\right)\), kẻ \(CK\perp AN\left(K\in AN\right)\). Chứng minh rằng BH = CK
c) Chứng minh rằng AH = AK
d) Khi \(\widehat{BAC}=60^0\) và BM = CN = BC, hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC ?