§2. Tổng và hiệu của hai vectơ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Hoàng

Gọi vecto GA + GB+GC =veto 0. CMR G là trọng tâm tam giác ABC

Mysterious Person
24 tháng 9 2017 lúc 8:44

* cái này là công thức rồi bn o cần chứng minh đâu

công thức : cho tam giác ABC ; nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

#CELINA DANG#
13 tháng 10 2022 lúc 20:44

Gọi M trung điểm BC

       G đối xứng D qua M

=> tứ giác BGCD là hình bình hành

=> GD=2.GM (Hình bình hành có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) 

Mà AG = 2.GM ( \(\dfrac{AG}{GM}=\dfrac{2}{1},GA=\dfrac{2}{3}AM\) )

⇒ AG=GD

Mặt khác, G ϵ AD 

\(\overrightarrow{AG}=\overrightarrow{GD}\)

Ta có \(\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GD}\) (Quy tắc hình bình hành)

Nên \(\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GA}\) = \(\overrightarrow{GD}+\overrightarrow{GA}\)   

Mà \(\overrightarrow{AG}=\overrightarrow{GD}\) (cmt)

\(\overrightarrow{AG}+\overrightarrow{GA}=\overrightarrow{AG}-\overrightarrow{AG}=\overrightarrow{O}\)

 


Các câu hỏi tương tự
Trang
Xem chi tiết
Tâm Thanh Hoàng
Xem chi tiết
Nguyễn Thảo Nguyên
Xem chi tiết
Tý Nguyen
Xem chi tiết
Phương Anh Nguyễn
Xem chi tiết
Khờ Híp
Xem chi tiết
Nguyễn Michelle
Xem chi tiết
Nguyễn Hữu Tài
Xem chi tiết
VTCVân
Xem chi tiết