trong tam giác đều ABC , tâm O của đường tròn ngoại tiếp cũng là trọng tâm của tam giác .
vậy \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\) (ĐPCM)
trong tam giác đều ABC , tâm O của đường tròn ngoại tiếp cũng là trọng tâm của tam giác .
vậy \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\) (ĐPCM)
câu 1: cho tứ giác ABCD. Gọi O là trung điểm của AB.
Chứng minh rằng: \(\overrightarrow{OD}+\overrightarrow{OC}=\overrightarrow{AD}+\overrightarrow{BC}\)
Câu 2: Cho tam giác ABC. Gọi A' là điểm đối xứng của B qua A, B' là điểm dối xứng của C qua B, C' là điểm đối xứng của A qua C. Với một điểm O bất kì, chứng minh rằng:
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)
Cho tứ giác ABCD. Gọi E, F, O lần lượt là trung điểm của AC, BD, EF. Chứng minh:
\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
Gọi O là giao điểm hai đường chéo của hình bình hành ABCD. Chứng minh rằng \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{O}\) ?
cho lục giác đều ABCDEF có tâm O . chứng minh rằng :
a, \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}=\overrightarrow{O}\)
b, \(\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OE}=\overrightarrow{O}\)
c, \(\overrightarrow{AB}+\overrightarrow{AO}+\overrightarrow{AF}=\overrightarrow{AD}\)
d, \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\) (M tùy ý )
Cho hình bình hành ABCD có tâm O. Chứng minh rằng :
a) \(\overrightarrow{CO}-\overrightarrow{OB}=\overrightarrow{BA}\)
b) \(\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{DB}\)
c) \(\overrightarrow{DA}-\overrightarrow{DB}=\overrightarrow{OD}-\overrightarrow{OC}\)
d) \(\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}\)
Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC. Qua O kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt AB và DC lần lượt tại M và N, cắt AD và BC lần lượt tại E và F. Chứng minh rằng :
a) \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
b) \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CD. CMR:
a. \(\overrightarrow{AM}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AC}\)
b. \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{AP}+\overrightarrow{BM}=\overrightarrow{MC}\)
c.\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
d. \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP},\forall0\)
Cho hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) sao cho \(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\)
a) Dựng \(\overrightarrow{OA}=\overrightarrow{a};\overrightarrow{OB}=\overrightarrow{b}\). Chứng minh O là trung điểm của AB
b) Dựng \(\overrightarrow{OA}=\overrightarrow{a};\overrightarrow{AB}=\overrightarrow{b}\). Chứng minh \(O\equiv B\)
Cho 4 điểm A,B,C,O phân biệt có độ dài 3 vecto \(\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}\) cùng bằng a và \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)
a) tính các góc AOB,BOC,COA
b)tính \(\left|\overrightarrow{OB}+\overrightarrow{AC}-\overrightarrow{OA}\right|\)