Ta có: \(y'=3x^2-6x\)\(\Rightarrow d:y=-2x+2\)
\(\Delta\) song song với \(d\Leftrightarrow-2=2m\Leftrightarrow m=-1\)
Ta có: \(y'=3x^2-6x\)\(\Rightarrow d:y=-2x+2\)
\(\Delta\) song song với \(d\Leftrightarrow-2=2m\Leftrightarrow m=-1\)
Cho hàm số \(y=\frac{3x+4}{3x+3}\) có đồ thị (C). Tìm các giá trị tham số m để đường thẳng d : y = x + m cắt đồ thị (C) tại hai điểm phân biệt A và B sao cho tam giác OAB đều ( với O là gốc tọa độ)
Cho hàm số y = x3-3x2+4 có đồ thị (C) . gọi d là đường thẳng qua I(1;2) với hệ số góc bằng k.Tập hợp các giá trị của k để d cắt (C) tại ba điểm phân biệt I,A,B sao cho I là trung điểm của đoạn thẳng AB
Cho hàm số \(y=\frac{x-3}{1-x}\) có đồ thị (C). Đường thẳng d đi qua A (1; -2) và có hệ số góc m. Tìm m để d cắt (C) tại hai điểm phân biệt M, N sao cho \(\overrightarrow{AM}=-2\overrightarrow{AN}\)
với giá trị nào của m thì đường thẳng (d): y=m và đồ thị hàm số y= -2xmu4 + 4x bình + 2 không có điểm chung
Gọi d là đường thẳng đi qua A(1;0) và có hệ số góc m. Tìm tất cả giá trị thực của tham số m để d cắt đồ thị hàm số y=\(\dfrac{x+2}{x-1}\)(C) tại hai điểm phân biệt thuộc 2 nhánh của đồ thị
A. m<0 B. 0<m\(\ne\)1 C. m\(\ne\)0 D. m>0
Cho hàm số \(y=x^4-2x^2\) có đồ thị \(\left(C\right)\). Tìm các giá trị của m để đường thẳng y = m cắt đồ thị (C) tại 4 điểm phân biệt E, F, M, N. Tính tổng hệ số góc của tiếp tuyến tại các điểm E, F, M, N
Cho hàm số y=\(\frac{1}{3}x^3-2x^2+3x-\frac{1}{3}\)
Tìm m để đường thẳng d: y=mx-\(\frac{1}{3}\) cắt đồ thị (C) tại 3 điểm phân biệt P,M,N sao cho P cố định và thỏa mãn \(S_{OMN}=2S_{OPM}\)
Tìm các giá trị của tham số m để đường thẳng \(y=-x+m\) cắt đồ thị hàm số \(y=\frac{x^2-1}{x}\) tại 2 điểm phân biệt A, B sao cho AB = 4
cho hàm số y=(2mx-3)(x+1) có đồ thị (C).biết m là giá trị để d:y=2x-3 cắt (C) tại 2 điểm pb A,B sao cho đường trung trực của AB qua gd 2 đường tiệm cận của (C). m là