Bài 1. Giải tam giác vuông ABC, biết: BC = 10cm, góc C = 55 độ.
Bài 2. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 5cm, AC = 12cm.
a) Tính AH.
b) Gọi M, N là hình chiếu của H trên AB, AC. Chứng minh rằng: MN2 = AM.AB.
c) Gọi K là điểm đối xứng của H qua AC. Tính diện tích tứ giác AHCK.
Cho tam giác ABC vuông tại A , AH là đường cao , góc ABC =60° . GỌI M LÀ TRUNG ĐIỂM CỦA AB , N LÀ TRUNG ĐIỂM CỦA AC . Lấy D đối xứng với H qua M và E đối xứng với H qua N. a, Chứng minh AH^2=AD. AE b, tia phân giác của góc ABC cắt AC tại K. Cm: sin góc ABC= 2sin góc ABK × cos CBK
Cho Tam giác ABC vuông tại A có AB=9 cm, BC=15, đường cao AH
a) Tính AH, CH
b) qua B vẽ đường thẳng vuông góc với BC cắt AC tại D. Tia phân giác của C cắt AB tại N và BD tại M. Chứng minh CN.CD=CM.CB
c) Chứng minh NA.CD=MD.CA
1. Tam giác vuông có 2 cạnh góc vuông tỉ lệ 2:3. Đường cao úng với cạnh huyền = 6. Tìm các cạnh góc vuông
2. Tam giác ABC vuông tại A. AB=30, AH=24. Tính các cạnh còn lại
b) Đường vuông góc với AB tại cắt A tại D. Tính BD
3. Tam giác ABC vuông có phân giác AD. Cạnh huyền chia làm 2 BD=36, CD=60. Đường cao AH. Tính HB/HC và AH
5. Tam giác ABC cân tại A. Chiều cao ứng với cạnh đáy=40, chiều cao ứng với cạnh bên=48. Tính diện tích tam giác
giúp em các cao thủ
Cho tam giác ABC vuông tại B , đường cao BH . Gọi M , N là hình chiếu của H trên AB , BC .
a) Viết các hệ thức lượng trong tam giác vuông AHB
b)Cho BC = 30cm , BH = 24cm ,Tính CH , AC , AH , AB .
c) Chứng minh : BN.BC + BM.BA = 2MN2
2) Cho ΔABC, \(\widehat{B}=60^o\), BC=8cm, AB+AC=12cm. Tính AB,AC.
3) Trong 1 tam giác vuông đường cao ứng với cạnh huyền chia tam giác làm 2 phần có diện tích bằng 54cm2, 96cm2.Tính cạnh huyền.
4) ΔABC vuông cân tại A, đường trung tuyến BM. Gọi D là hình chiếu của C trên BM, H là hình chiếu của D trên AC. Chứng minh: AH=3HD
Bài 12: Cho LA BC vuông tại A, đường cao AH . Cho BH = 9cm; H C =16 cm . a/ Tính độ dài AB, AC b/ HE LAB tại E,HF L AC tại F . Chứng minh: A E.A B = AF.A C c/ Lấy điểum K trên cạnh BC, kẻ KM I AB tại M, KN L AC tại N. Chứng minh tam giác HMN vuông.
Câu 1: Cho tam giác ABC vuông tại A, gọi O là trung điểm AB. Đường thẳng qua O vuông góc CO cắt đường thẳng qua B vuông góc với AB tại D.
a) Chứng minh rằng AB^2=4AC.BD.
b) M là một điểm bất kì trên CD, gọi E,F lầm lượt là hình chiếu của M trên OC, OD. Chứng minh rằng: MC.MD=EO+FO.FD.
Câu 2: Cho tam giác ABC vuông cân tại A và điểm M thuộc cạnh BC. Kẻ ME,MF lần lượt vuông góc với AB,AC tại E và F. Chứng minh rằng:
a) BM^2= 2ME^2, CM^2 =2MF^2
b) BM^2+CM^2= 2AM^2
Giups mình với huhu, mình đang cần gấp lắm!! PLEASE
cho tam giác ABC vuông tại a, đường cao AH, biết BH=1cm, HC=4cm.
a) Tính AH.
b) Gọi D là điểm bất kì trên cạnh AC ( D khác A và C) kẻ AE vuông góc DB tại E chứng minh góc BHD = góc BEC