Cho 2 số dương x và y sao cho x+y=1.Tìm giá trị nhỏ nhất của biểu thức P=\(\left(1-\dfrac{1}{x^2}\right)\)\(\left(1-\dfrac{1}{Y^2}\right)\)
Cho biểu thức A = \(\left(\dfrac{2\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}-3}\right)\): \(\dfrac{3}{\sqrt{x}-3}\) với x \(\ge0;\) \(x\ne9\)
1) Rút gọn biểu thức A
2) Tìm x để A = \(\dfrac{5}{6}\)
3) Tìm giá trị nhỏ nhất của biểu thức A
cho x,y,z là các số dương thay đổi thỏa mãn : xy+yz+zx=3xyz
tìm max của bt : \(\dfrac{11x+4y}{4x^2-xy+2y^2}+\dfrac{11y+4z}{4y^2-yz+2z^2}+\dfrac{11z+4x}{4z^2-zx+2x^2}\)
cho x,y,z>0 thỏa mãn:\(x^2+y^2+z^2=3.\)chứng minh:
\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\ge3\)
Cho các số dương x;y;z thỏa mãn : x\(\ge\)y\(\ge\)z .Cm rằng :
\(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}\ge x^2+y^2+z^2\)
a)\(\left\{{}\begin{matrix}\sqrt{x}+2\sqrt{y-1}=5\\4\sqrt{x}-\sqrt{y-1}=2\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{8}{x}-\dfrac{1}{y+12}=1\\\dfrac{1}{x}+\dfrac{5}{y+12}=36\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=1\end{matrix}\right.\)
Cho a và b là các số thực dương thỏa mãn a+b\(\ge\)1. Tìm giá trị nhỏ nhất của biểu thức \(A=\dfrac{8a^2+b}{4a}+b^2\)
bài 1
\(\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x^2+\sqrt{x}}{x\sqrt{x}+x}\) (x>0,x\(\ne\) 1)
chứng minh với mọi giá trị của x để biểu thức P có nghĩa thì biểu thức \(\dfrac{7}{P}\) chỉ nhận một giá trị nguyên
bài 2
\(x^2-2mx+\left(m-1\right)^3=0\)
tìm m để phương trình có nghiệm phân biệt trong đó có một nghiệm bằng bình phương nghiệm còn lại
Cho 2 số dương a và b thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}=2\) tìm giá trị lớn nhất của biểu thức Q=\(\dfrac{1}{a^4+b^2+2ab^2}+\dfrac{1}{b^4+a^2+2ba^2}\)