Cho hình chóp S.ABCD có đáy ABCD là một hình thoi tâm I cạnh a và có góc A bằng \(60^0\), cạnh \(SC=\dfrac{a\sqrt{6}}{2}\) và SC vuông góc với mặt phẳng (ABCD)
a) Chứng minh mặt phẳng (SBD) vuông góc với mặt phẳng (SAC)
b) Trong tam giác SCA kẻ IK vuông góc với SA tại K. Hãy tính độ dài IK
c) Chứng minh \(\widehat{BKD}=90^0\) và từ đó suy ra mặt phẳng (SAB) vuông góc với mặt phẳng (SAD)
Cho hình chóp sabcd có abcd là hình thang vuông tại a,d. Ab=2a, ad=cd=a. Sa=a√2, sa vuông góc abcd a, (sb,(abcd))=? (Sc,(abcd)=? b, kẻ ah vuông góc sc tại h. Ak vuông góc sd tại k (Ah,(sad))=? (Sb,(sac)=?
Cho hình chóp S.ABCD có đáy ABCD là một hình thoi cạnh a và SA=SB=SC=a. Chứng minh rằng :
a) Mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD)
b) Tam giác SBD là tam giác vuông
cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh AB=2a, SI vuông góc ( ABCD) vs I là trung điểm canh AB và SI=a√5. Gọi M là trung điểm của BC. a) CM BC vuông góc (SAB) và IM vuông góc (SBD) b) tính góc giữa SC và (ABCD)
cho chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc vs đáy , SA=a căn 3 . TÍnh ( SC , (SAB) )
Hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a có SA = SB = SC = a
Chứng minh rằng :
a) Mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD)
b) Tam giác SBD là tam giác vuông tại S
Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O và có cạnh SA vuông góc với mặt phẳng (ABCD). Giả sử \(\left(\alpha\right)\) là mặt phẳng đi qua A và vuông góc với cạnh SC, \(\left(\alpha\right)\) cắt SC tại I
a) Xác định giao điểm K của SO với phẳng \(\left(\alpha\right)\)
b) Chứng minh mặt phẳng (SBD) vuông góc với mặt phẳng (SAC) và BD // \(\left(\alpha\right)\)
c) Xác định giao tuyến d của mặt phẳng (SBD) và mặt phẳng \(\left(\alpha\right)\). Tìm thiết diện cắt hình chóp S.ABCD bởi mặt phẳng \(\left(\alpha\right)\)
Cho hình chóp tứ giác đều S.ABCD có các cạnh bên và các cạnh đáy đều bằng a. Gọi O là tâm của hình vuông ABCD.
a) Tính độ dài đoạn SO.
b) Gọi M là trung điểm của đoạn SC. Chứng minh hai mặt phẳng (MBD) và (SAC) vuông góc với nhau.
c) Tính độ dài đoạn OM và tính góc giữa hai mặt phẳng (MBD) và (ABCD).
d) gọi H là trung điểm CD. tính diện tích SCD
các bạn làm câu D thôi nha