Bài 119 :
a, Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ( \(a\in N\) )
=> Tổng của 3 số tự nhiên liên tiếp là :
a + ( a + 1 ) + ( a + 2 )
= ( a + a + a ) + ( 1 + 2 )
= a . 3 + 3
= 3 ( a + 1 ) .
Mà : a + 1 \(\in\) N => 3 ( a + 1 ) \(⋮\) 3
Vậy tổng của 3 số tự nhiên liên tiếp chia hết cho 3
b, Gọi 4 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3 ( \(a\in N\) )
=> Tổng của 4 số tự nhiên liên tiếp là :
a + ( a + 1 ) + ( a + 2 ) + ( a + 3 )
= ( a + a + a + a ) + ( 1 + 2 + 3 )
= 4a + 6
Mà : 4a \(⋮\)4 ; 6 \(⋮̸\) 4
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
Bài 118 :
a, Xét 2 số tự nhiên liên tiếp : a ; a + 1 ( \(a\in N\) )
+ Nếu a \(⋮\) 2 => bài toán được giải .
+ Nếu a = 2k + 1 ( \(k\in N\) ) => a + 1 = 2k + 1 + 1 = 2k + 2 \(⋮\)2
Vậy trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2
b, Xét 3 số tự nhiên liên tiếp : a ; a + 1 ; a + 2 ( \(a\in N\) )
+ Nếu a \(⋮\) 3 => bài toán được giải
+ Nếu a = 3k + 2 ( \(k\in N\) ) => a + 1 = 3k + 1 + 2 = 3k + 3 \(⋮\) 3
+ Nếu a = 3k + 1 ( \(k\in N\) ) => a + 2 = 3k + 1 + 2 = 3k + 3 \(⋮\) 3
Vậy trong 3 số tự nhiên liên tiếp có một số chia hết cho 3 .