Sửa đề: \(m\ne2\)
\(y=\left(m-2\right)x+m-1\)
=>\(\left(m-2\right)x-y+m-1=0\)
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(-1\right)+m-1\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}\)
\(=\dfrac{\left|m-1\right|}{\sqrt{\left(m-2\right)^2+1}}\)
Để \(d\left(O;\left(d\right)\right)=2\) thì \(\dfrac{\left|m-1\right|}{\sqrt{\left(m-2\right)^2+1}}=2\)
=>\(\left|m-1\right|=\sqrt{4\left(m-2\right)^2+4}\)
=>\(\sqrt{4\left(m-2\right)^2+4}=\sqrt{\left(m-1\right)^2}\)
=>\(4\left(m-2\right)^2+4=\left(m-1\right)^2\)
=>\(4\left(m^2-4m+4\right)+4-m^2+2m-1=0\)
=>\(4m^2-16m+16-m^2+2m+3=0\)
=>\(3m^2-14m+19=0\)(1)
\(\text{Δ}=\left(-14\right)^2-4\cdot3\cdot19\)
\(=196-12\cdot19=-32< 0\)
=>Phương trình (1) vô nghiệm
Vậy: \(m\in\varnothing\)