29.a
Ta có: \(\left(\sqrt{11}+\sqrt{7}\right)^2=18+2\sqrt{77}\)
\(\left(\sqrt{10}+\sqrt{8}\right)^2=18+2\sqrt{80}\)
Dễ thấy: \(18+2\sqrt{77}< 18+2\sqrt{80}\)
=>\(\left(\sqrt{11}+\sqrt{7}\right)^2< \left(\sqrt{10}+\sqrt{8}\right)^2\)
Mà \(\sqrt{11}+\sqrt{7}\) và \(\sqrt{10}+\sqrt{8}\) đều dương
=>\(\sqrt{11}+\sqrt{7}< \sqrt{10}+\sqrt{8}\).
29b)
\(\left(\sqrt{103}+\sqrt{105}\right)^2=208+2\sqrt{10816}\)
\(\left(2\sqrt{104}\right)^2=\left(\sqrt{104}+\sqrt{104}\right)^2=208+2\sqrt{10816}\)
(rồi làm tương tự như Đức Huy ABC, đề tên tác giả ở đây cho đỡ vi phạm bản quyền, cảm ơn vì ý tưởng nhé ^^! )
30a) \(\sqrt{x+1}=3-\sqrt{x}\Leftrightarrow x+1=9-6\sqrt{x}+x\Leftrightarrow6\sqrt{x}=8\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\)
Vậy........
30b) \(\sqrt{x+15}=2+\sqrt{x+3}\Leftrightarrow x+15=4+4\sqrt{x+3}+x+3\Leftrightarrow\sqrt{x+3}=4\Leftrightarrow x+3=16\Leftrightarrow x=13\)
vậy...........