Vì a;b;c > 0 nên \(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}>0\)
BĐT Cosi :
\(9a+\dfrac{1}{a}\ge2.\sqrt{9a.\dfrac{1}{a}}=2.3=6\\ 9b+\dfrac{1}{b}\ge6\\ 9c+\dfrac{1}{c}\ge6\\ \Rightarrow\left(9a+\dfrac{1}{a}\right)+\left(9b+\dfrac{1}{b}\right)+\left(9c+\dfrac{1}{c}\right)\ge18\\ \Rightarrow9\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge18\\ \Rightarrow9+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge18\\ \Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)
Dấu "=" xảy ra khi a=b=c=1/3