Bài 3:
1)
\(2x^2+5x+3=0\\ \Leftrightarrow\left(3+2x\right)\cdot\left(1+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}3+2x=0\\1+x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{3}{2}\\x=-1\end{matrix}\right.\)
2)
\(x^2+4x+3=0\\ \Leftrightarrow\left(3+x\right)\cdot\left(1+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}3+x=0\\1+x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
3)
\(x^2-x-12=0\\ \Leftrightarrow\left(-3-x\right)\cdot\left(4-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3-x=0\\4-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
4)
\(x^2-3x+2=0\\ \Leftrightarrow\left(1-x\right)\cdot\left(2-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}1-x=0\\2-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
5)
\(-x^2+5x-6=0\\ \Leftrightarrow\left(-3+x\right)\cdot\left(2-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3+x=0\\2-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
6)
\(4x^2-12x+5=0\\ \Leftrightarrow\left(1-2x\right)\cdot\left(5-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}1-2x=0\\5-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)
7)
\(4x^2+4x-3=0\\ \Leftrightarrow\left(-3-2x\right)\cdot\left(1-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3-2x=0\\1-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
8)
\(x^2-3x+2=0\\ \Leftrightarrow\left(1-x\right)\cdot\left(2-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}1-x=0\\2-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
9)
\(3x^2-22x-16=0\\ \Leftrightarrow\left(-2-3x\right)\cdot\left(8-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-2-3x=0\\8-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{2}{3}\\x=8\end{matrix}\right.\)
10)
\(2x^2+7x-15=0\\ \Leftrightarrow\left(-5-x\right)\cdot\left(3-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-5-x=0\\3-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\x=\frac{3}{2}\end{matrix}\right.\)
11)
\(\left(x-5\right)^2-16=0\\ \Leftrightarrow\left(x-9\right)\cdot\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-9=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
12)
\(\left(x-4\right)^2-25=0\\ \Leftrightarrow\left(x-9\right)\cdot\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-9=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)
13)
\(25-\left(3-x\right)^2=0\\ \Leftrightarrow\left(2+x\right)\cdot\left(8-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2+x=0\\8-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\x=8\end{matrix}\right.\)
14)
\(\left(x-3\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow-4\cdot\left(2x-2\right)=0\\ \Rightarrow2x-2=0\\ \Rightarrow x=1\)
Bài 3
1, 2x2 + 5x + 3 = 0
\(\Leftrightarrow\) 2x2 + 2x + 3x + 3 = 0
\(\Leftrightarrow\) 2x(x + 1) + 3(x + 1) = 0
\(\Leftrightarrow\) (x + 1)(2x + 3) = 0
\(\Leftrightarrow\) x + 1 = 0 hoặc 2x + 3 = 0
\(\Leftrightarrow\) x = -1 và x = \(\frac{-3}{2}\)
Vậy S = {-1; \(\frac{-3}{2}\)}
2, x2 + 4x + 3 = 0
\(\Leftrightarrow\) x2 + x + 3x + 3 = 0
\(\Leftrightarrow\) x(x + 1) + 3(x + 1) = 0
\(\Leftrightarrow\) (x + 1)(x + 3) = 0
\(\Leftrightarrow\) x + 1 = 0 hoặc x + 3 = 0
\(\Leftrightarrow\) x = -1 hoặc x = -3
Vậy S = {-1; -3}
tiếp bài 3
14, (x - 3)2 - (x + 1)2 = 0
\(\Leftrightarrow\) (x - 3 - x - 1)(x - 3 + x + 1) = 0
\(\Leftrightarrow\) (-4)(2x - 2) = 0
\(\Leftrightarrow\) (-8)(x - 1) = 0
\(\Leftrightarrow\) x - 1 = 0
\(\Leftrightarrow\) x = 1
Vậy S = {1}
15)
\(\left(3x-7\right)^2-4\cdot\left(x+1\right)^2=0\\ \Leftrightarrow5x^2-50x+45\\ \Leftrightarrow5\cdot\left(1-x\right)\cdot\left(9-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}1-x=0\\9-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
16)
\(\left(7x-4\right)^2\cdot\left(2x+1\right)^2=0\\ \Leftrightarrow\left(5x-5\right)\cdot\left(9x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}5x-5=0\\9x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
17)
\(\left(x^2-4\right)\cdot\left(2x+3\right)=\left(x^2-4\right)\cdot\left(x-1\right)\\ \Leftrightarrow\left(x^2-4\right)\cdot\left(2x+3\right)-\left(x^2-4\right)\cdot\left(x-1\right)=0\\ \Leftrightarrow\left(x-2\right)\cdot\left(x+2\right)\cdot\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)
18)
\(x^3-25x=0\\ \Leftrightarrow x\cdot\left(x-5\right)\cdot\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
19)
\(x^3-16x=0\\ \Leftrightarrow x\cdot\left(x-4\right)\cdot\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
20)
\(x^3-5x^2+6x=0\\ \Leftrightarrow x\cdot\left(2-x\right)\cdot\left(3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\2-x=0\\3-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)
Bài 3 (thêm bước):
3)
\(x^2-x-12=0\\ \Leftrightarrow-12+3x-4x+x^2=0\\ \Leftrightarrow-3\cdot\left(4-x\right)-x\cdot\left(4-x\right)=0\\ \Leftrightarrow\left(4-x\right)\cdot\left(-3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}4-x=0\\-3-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
4)
\(x^2-3x+2=0\\ \Leftrightarrow x^2-x-2x+2=0\\ \Leftrightarrow2\cdot\left(1-x\right)-x\cdot\left(1-x\right)=0\\ \Leftrightarrow\left(1-x\right)\cdot\left(2-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}1-x=0\\2-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
5)
\(-x^2+5x-6=0\\ \Leftrightarrow-x^2+2x+3x-6=0\\ \Leftrightarrow x\cdot\left(2-x\right)-3\cdot\left(2-x\right)=0\\ \Leftrightarrow\left(2-x\right)\cdot\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
6)
\(4x^2-12x+5=0\\ \Leftrightarrow5-2x-10x+4x^2=0\\ \Leftrightarrow5\cdot\left(1-2x\right)-2x\cdot\left(1-2x\right)=0\\ \Leftrightarrow\left(5-2x\right)\cdot\left(1-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}5-2x=0\\1-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
7)
\(4x^2+4x-3=0\\ \Leftrightarrow-3+6x-2x+4x^2=0\\ \Leftrightarrow-3\cdot\left(1-2x\right)-2x\cdot\left(1-2x\right)=0\\ \Leftrightarrow\left(-3-2x\right)\cdot\left(1-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3-2x=0\\1-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
8)
\(x^2-3x+2=0\\ \Leftrightarrow2-3x+x^2=0\\ \Leftrightarrow2-x-2x+x^2=0\\ \Leftrightarrow2\cdot\left(1-x\right)-x\cdot\left(1-x\right)=0\\ \Leftrightarrow\left(2-x\right)\cdot\left(1-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\1-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
9)
\(3x^2-22x-16=0\\ \Leftrightarrow-16-22x+3x^2=0\\ \Leftrightarrow-16+2x-24x+3x^2=0\\ \Leftrightarrow-2\cdot\left(8-x\right)-3x\cdot\left(8-x\right)=0\\ \Leftrightarrow\left(-2-3x\right)\cdot\left(8-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-2-3x=0\\8-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{2}{3}\\x=8\end{matrix}\right.\)
10)
\(2x^2+7x-15=0\\ \Leftrightarrow-15+7x+2x^2=0\\ \Leftrightarrow-15+10x-30+2x^2=0\\ \Leftrightarrow-2\cdot\left(3-2x\right)-x\cdot\left(3-2x\right)=0\\ \Leftrightarrow\left(-5-x\right)\cdot\left(3-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-5-x=0\\3-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\x=\frac{3}{2}\end{matrix}\right.\)
11)
\(\left(x-5\right)^2-16=0\\ \Leftrightarrow\left(x-5\right)^2-4^2=0\\ \Leftrightarrow\left(x-5-4\right)\cdot\left(x-5+4\right)=0\\ \Leftrightarrow\left(x-9\right)\cdot\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-9=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
12)
\(\left(x-4\right)^2-25=0\\ \Leftrightarrow\left(x-4\right)^2-5^2=0\\ \Leftrightarrow\left(x-4-5\right)\cdot\left(x-4+5\right)=0\\ \Leftrightarrow\left(x-9\right)\cdot\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-9=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)
13)
\(25-\left(3-x\right)^2=0\\ \Leftrightarrow5^2-\left(3-x\right)^2=0\\ \Leftrightarrow\left(5-3+x\right)\cdot\left(5+3-x\right)=0\\ \Leftrightarrow\left(2+x\right)\cdot\left(8-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2+x=0\\8-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\x=8\end{matrix}\right.\)
14)
\(\left(x-3\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(x-3-x-1\right)\cdot\left(x-3+x+1\right)=0\\ \Leftrightarrow-4\cdot\left(2x-2\right)=0\\ \Rightarrow2x-2=0\\ \Rightarrow x=1\)
15)
\(\left(3x-7\right)^2-4\cdot\left(x+1\right)^2=0\\ \Leftrightarrow9x^2-42x+49-4x^2-8x-4=0\\ \Leftrightarrow5x^2-50x+45=0\\ \Leftrightarrow5\cdot\left(x^2-10x+9\right)=0\\ \Leftrightarrow5\cdot\left(9-9x-x+x^2\right)=0\\ \Leftrightarrow5\cdot\left[9\cdot\left(1-x\right)-x\cdot\left(1-x\right)=0\right]\\ \Leftrightarrow5\cdot\left(9-x\right)\cdot\left(1-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}9-x=0\\1-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
16)
\(\left(7x-4\right)^2-\left(2x+1\right)^2=0\\ \Leftrightarrow\left(7x-4-2x-1\right)\cdot\left(7x-4+2x+1\right)=0\\ \Leftrightarrow\left(5x-5\right)\cdot\left(9x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}5x-5=0\\9x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
17)
\(\left(x^2-4\right)\cdot\left(2x+3\right)=\left(x^2-4\right)\cdot\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-4\right)\cdot\left(2x+3\right)-\left(x^2-4\right)\cdot\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-4\right)\cdot\left(2x+3-x+1\right)=0\\ \Leftrightarrow\left(x^2-4\right)\cdot\left(x+4\right)=0\\ \Leftrightarrow\left(x-2\right)\cdot\left(x+2\right)\cdot\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)
18)
\(x^3-25x=0\\ \Leftrightarrow x\cdot\left(x^2-25\right)=0\\ \Leftrightarrow x\cdot\left(x-5\right)\cdot\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
19)
\(x^3-16x=0\\ \Leftrightarrow x\cdot\left(x^2-16\right)=0\\ \Leftrightarrow x\cdot\left(x-4\right)\cdot\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
20)
\(x^3-5x^2+6x=0\\ \Leftrightarrow x\cdot\left(x^2-5x+6\right)=0\\ \Leftrightarrow x\cdot\left(6-2x-3x+x^2=0\right)\\ \Leftrightarrow x\cdot\left[2\cdot\left(3-x\right)-x\cdot\left(3-x\right)=0\right]\\ \Leftrightarrow x\cdot\left(2-x\right)\cdot\left(3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\2-x=0\\3-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)
Bài 5.
a)
Có AB < AC (vì n > m) (1)
Ta có: \(\frac{AB}{AC}=\frac{BD}{DC}\) ( vì AD là phân giác của góc BAC) (2)
Từ (1) và (2), ta có BD < CD
⇒ D nằm giữa B và M
Đặt S1, S2 lần lượt là diện tích △ADM và △ADC
Ta có:
\(\frac{S_1}{S_2}=\frac{\frac{1}{2}\cdot BD\cdot AH}{\frac{1}{2}\cdot CD\cdot AH}=\frac{BD}{CD}=\frac{AB}{AC}=\frac{m}{n}\)
⇒ \(\frac{S_1+S_2}{S_2}=\frac{m+n}{n}=\frac{S}{S_2}=\frac{m+n}{n}\Rightarrow S_2=\frac{n\cdot S}{m+n}\)
Vì \(S_{AMC}=S_{AMB}=\frac{1}{2}\cdot S\) ⇒ \(S_{ADM}\) là:
\(S_{ADM}=S_{ADC}-S_{AMC}=S_2-\frac{1}{2}\cdot S=\frac{n\cdot S}{m+n}-\frac{1}{2}\cdot S=\left[\frac{n-m}{2\cdot\left(m+n\right)}\right]\cdot S\)
b)
\(S_{ADM}=\left[\frac{7-3}{2\cdot\left(7+3\right)}\right]\cdot S=\frac{2}{10}\cdot S=\frac{1}{5}\cdot S=0.2\cdot S=20\%\cdot S\)
Vậy \(S_{ADM}=20\%\cdot S_{ABC}\)
Bài 4.
a)Ta có \(\Delta ABC\) cân tại A nên: \(AB=AC=15\left(cm\right)\)
Mà BD là đường p/g đồng thời là đường trung tuyến ( AD = DC) nên:
\(AD=\frac{AC}{2}=\frac{15}{2}=7.5\left(cm\right)\\ \Rightarrow DC=AC=7.5\left(cm\right)\)
b)?