Bài 2:
a) Ta có: \(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}-\dfrac{20}{\sqrt{10}}\)
\(=\dfrac{\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{5}-\sqrt{2}}+\dfrac{6\cdot\left(\sqrt{10}+2\right)}{\left(\sqrt{10}-2\right)\left(\sqrt{10}+2\right)}-\dfrac{\sqrt{10}\cdot2\sqrt{10}}{\sqrt{10}}\)
\(=\sqrt{10}+\sqrt{10}-2-2\sqrt{10}\)
=-2
b) Ta có: \(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
\(=\left(\sqrt{5}-1-2\right)\left(\sqrt{5}-1+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)\)
=5-9=-4
c) Ta có: \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\dfrac{\sqrt{5}+1}{\sqrt{5}-1}\)
\(=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\dfrac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
\(=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\dfrac{6+2\sqrt{5}}{4}\)
\(=\dfrac{16}{2}-\dfrac{6+2\sqrt{5}}{4}\)
\(=\dfrac{32-6-2\sqrt{5}}{4}\)
\(=\dfrac{26-2\sqrt{5}}{4}\)
\(=\dfrac{13-\sqrt{5}}{2}\)