7)
\(=\dfrac{\left(5-\sqrt{5}\right).\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{3\left(\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)}\)
\(=\dfrac{\left(5-\sqrt{5}\right)\left(1+\sqrt{5}\right)}{1-5}+\dfrac{3\left(\sqrt{2}+\sqrt{5}\right)}{4-5}\)
\(=\dfrac{5+5\sqrt{5}-\sqrt{5}-5}{4}+3\left(\sqrt{2}+\sqrt{5}\right)\)
=\(\dfrac{4\sqrt{5}}{4}+3\left(\sqrt{2}+\sqrt{5}\right)\)
\(=\sqrt{5}+3\sqrt{2}+3\sqrt{5}\)
\(=4\sqrt{5}+3\sqrt{2}\)
7: Ta có: \(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}+\dfrac{3}{\sqrt{2}-\sqrt{5}}\)
\(=-\sqrt{5}-3\left(\sqrt{5}+\sqrt{2}\right)\)
\(=-\sqrt{5}-3\sqrt{5}-3\sqrt{2}\)
\(=-4\sqrt{5}-3\sqrt{2}\)