Bài 10:
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền AB
nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
hay AH=2,4(cm)
Bài 9:
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{A}\) chung
Do đó: ΔABE\(\sim\)ΔACF
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{A}\) chung
Do đó: ΔAEF\(\sim\)ΔABC
b: Ta có: \(\dfrac{AE}{AB}=\dfrac{EF}{BC}\)
nên \(BC=EF:\dfrac{1}{2}=5:\dfrac{1}{2}=10\left(cm\right)\)