TH1: `x>=0`
`\sqrt(x^2-2x+1)=x^2-x`
`<=> |x-1| =x^2-x`
TH1.1: `x-1 >=0 <=> x>=1`
`x-1=x^2-x`
`<=>x=1` (TM)
TH1.2: `x>= 0 \vee x<1`
`=>` VN.
TH2: `x<0`
`\sqrt(x^2+2x+1)=x^2+x`
`<=> |x+1|=x^2+x`
TH2.1: `x>=-1`
`x+1=x^2+x`
`<=> x=\pm 1`
TH2.2: `x<-1`
`-x-1=x^2+x`
`<=>x=-1`
Vậy `S={-1;1}`.
Ta có \(x^2-\left|x\right|\ge0\Leftrightarrow\left|x\right|^2\ge\left|x\right|\Leftrightarrow\left|x\right|\ge1\).
Khi đó \(PT\Leftrightarrow\sqrt{\left(\left|x\right|-1\right)^2}=x^2-\left|x\right|\)
\(\Leftrightarrow\left|x\right|-1=x^2-\left|x\right|\Leftrightarrow\left(\left|x\right|-1\right)^2=0\Leftrightarrow\left|x\right|=1\Leftrightarrow x=\pm1\) (thỏa mãn |x| \(\geq \) 1).
Vậy...