Lời giải:
ĐK: \(x\geq -1\)
Ta có:
\(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)
\(\Rightarrow 11+2x+2\sqrt{(x+1)(x+10)}=2x+7+2\sqrt{(x+2)(x+5)}\)
(bình phương 2 vế)
\(\Rightarrow 2+\sqrt{(x+1)(x+10)}=\sqrt{(x+2)(x+5)}\)
\(\Leftrightarrow 2+\sqrt{x^2+11x+10}=\sqrt{x^2+7x+10}\)
Đặt \(\sqrt{x^2+7x+10}=t\). PT trở thành:
\(2+\sqrt{t^2+4x}=t\)
\(\Rightarrow t^2+4x=(t-2)^2=t^2-4t+4\)
\(\Rightarrow x=1-t\Rightarrow t=1-x\)
\(\Rightarrow (1-x)^2=t^2=x^2+7x+10\)
\(\Rightarrow 9x+9=0\Rightarrow x=-1\) (thỏa mãn)