ĐK: \(\forall x\in R\)
Với \(x=0\) không thỏa mãn pt
Với \(x\ne0\):
PT\(\Leftrightarrow\frac{9}{2x+1+\frac{3}{x}}-\frac{1}{2x-1+\frac{3}{x}}=8\)
Đặt \(2x+\frac{3}{x}=t\Leftrightarrow2x^2-tx+3=0\)
Khi đó: \(\frac{9}{t+1}-\frac{1}{t-1}=8\) \(\Leftrightarrow\frac{8t-10}{t^2-1}=8\Leftrightarrow8t^2-8=8t-10\)
\(\Leftrightarrow8t^2-8t+2=0\) \(\Leftrightarrow t=\frac{1}{2}\)
\(\Leftrightarrow2x^2-\frac{1}{2}x+3=0\) (Vô no)
Vậy PTVN.
Xét $x=0$ không phải là nghiệm
Xét $x \le 0$:
\( \dfrac{{9x}}{{2{x^2} + x + 3}} - \dfrac{x}{{2{x^2} - x + 3}} = 8\\ \Leftrightarrow \dfrac{9}{{2x + 1 + \dfrac{3}{x}}} - \dfrac{1}{{2x - 1 + \dfrac{3}{x}}} = 8 \)
Đặt \(2x + \dfrac{3}{x} = t\), ta có phương trình:
\(\dfrac{9}{{t + 1}} - \dfrac{1}{{t - 8}} = 0 \Leftrightarrow - 8{t^2} + 8t - 2 = 0 \Rightarrow t = \dfrac{1}{2}\)
\( \Rightarrow 2x + \dfrac{3}{x} = \dfrac{1}{2}\\ \Leftrightarrow 4{x^2} - x + 6 = 0\\ \Leftrightarrow {\left( {2x - \dfrac{1}{4}} \right)^2} + \dfrac{{95}}{6} = 0 \)
Vậy phương trình vô nghiệm