\(x^3-x^2+x-1=0\)
\(\Leftrightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+1\right)=0\)
Dễ thấy: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1\ge1>0\forall x\) (vô nghiệm)
Nên \(x-1=0\Rightarrow x=1\)
\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^2+1\right)=0\)
Vì \(x^2+1>0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
S = {1}