=>\(\left(\dfrac{x+1}{2021}+1\right)+\left(\dfrac{x+2}{2020}+1\right)+\left(\dfrac{x+3}{2019}+1\right)+\left(\dfrac{x+2028}{2}-3\right)=0\)
=>x+2022=0
=>x=-2022
=>\(\left(\dfrac{x+1}{2021}+1\right)+\left(\dfrac{x+2}{2020}+1\right)+\left(\dfrac{x+3}{2019}+1\right)+\left(\dfrac{x+2028}{2}-3\right)=0\)
=>x+2022=0
=>x=-2022
Cho x+y=1. C/m
\(\dfrac{x}{y^3-1}+\dfrac{y}{x^3-1}+\dfrac{2\left(xy-2\right)}{x^2y^2+3}=0\)
bài 1: tính
a, A= 2x-9/x2-5x+6 - x+3/x-2 - 2x+1/3-x
b, B= 2x+1/x2-7x+12 - x+3/x-4 + 2x+1/x-3
c, C= x+2/x+3 - 5/x2+x-6 + 1/2-x
d, D= 3(x2+x-3)/x2+x-2 + x+3/x+2 - x-2/x-1
a)\(\dfrac{2}{x+2}-\dfrac{1}{x+3}+\dfrac{2x+5}{\left(x+2\right)\left(x+3\right)}\)
b)\(\dfrac{2}{x+1}-\dfrac{1}{x+5}+\dfrac{2x+6}{\left(x+5\right)\left(x+1\right)}\)
c)\(\dfrac{-6}{x^2-9}-\dfrac{1}{x+3}+\dfrac{3}{x-3}\)
d)\(\dfrac{x}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\)
Trừ phân thức:
a) x^2+y^2/(x-y)^3 - 2xy/(x-y)^3.
b) x^2+25y^2/x^2-25y^2 - 10xy/x^2-25y^2.
c)3x/5x+5y - x/10x-10y.
d) 1/x-3 - 3/2x+6 - x/2x^2-12x+18.
e) (x^2-1) - x^4-3x^2-4/x^2+1.
f) 1/3x-2 - 4/3x+2 - 3x-6/4-9x^2.
g) 4x^2-3x+5/x^3-1 - 1-2x/x^2+x+1 - 6/x-1.
h) 5/x+1 - 10/x-x^2-1 - 15/x^3+1.
i) 2/2x+1 - 1/2x-1 - 2/4x^2-1.
Thực hiện phép tính: A, x-2 - x^2-10/x+2 B, x/y^2- xy - y/xy-x^2 C, 1/x(x-1) + 1/x-1(x-2) + 1/(x-2)(x-3) + 1/(x-3)(x-4) + 1/(x-4)(x-5) Giúp mình bài này với ạ
Bài 1: Thực hiện phép chia:
a) \(\dfrac{5}{x}+\dfrac{x}{x+6}-\dfrac{30}{x^2+6x}\) với x ≠ -6 và x ≠ 0
b) \(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\) với x ≠ \(\pm\)1
c) \(\dfrac{3x^2+2x+1}{x^3-1}-\dfrac{1-x}{x^2+x+1}-\dfrac{2}{x-1}\) với x ≠ 1
1/ \(\dfrac{x}{x-1}-\dfrac{5x-3}{x^2-1}\)
2/ \(\dfrac{2}{x}-\dfrac{2}{x+1}\)
3/ \(\dfrac{x+2}{x-1}+\dfrac{3}{x+1}-\dfrac{x^2}{x^2-1}\)
Tính:
a) \(\dfrac{9-3x}{x^2+3x+4}-\dfrac{3x-23}{\left(1-x\right)\left(x+4\right)}\)
b) \(\dfrac{4-x}{x^3+2x}-\dfrac{x+5}{x^3-x^2+2x-2}\)
c)\(\dfrac{x^2-3}{x^3+2x^2-x-2}-\dfrac{x}{2-x-x}\)
Giúp mình với ạ!!! ai trả lời nhanh mình tick luôn nhé
a, \(\frac{2x^2-x}{x^2+x+1}+\frac{x^3-2x^2}{x^2+x+1}+\frac{x-1}{x^2+x+1}\)
b, \(\frac{2x+y}{x\left(y^2-x\right)}-\frac{2x-y}{x\left(y^2-x\right)}\)
c, \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{-5-2}{x^2-4}\)
d, \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)
e, \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
f, \(\frac{3}{x^2+2xy+y^2}+\frac{4}{2xy-x^2-y^2}+\frac{5}{x^2-y^2}\)