Giải phương trình vô tỷ sau
a,\(\sqrt{x^2+x-1}\) + \(\sqrt{x-x^2+1}\) = \(x^2\) - x + 2
b, \(\sqrt{x-2}\) + \(\sqrt{4-x}\) = 2\(x^2\) -5x -1
( Ai GIẢI ĐC CÂU NÀO THÌ GIÚP MÌNH NHÉ , MÌNH ĐANG CẦN GẤP )
( CẢM ƠN !!!)
Giải phương trình:
1) \(x^4-2\sqrt{3}x^2+x+3-\sqrt{3}=0\)
2)\(\dfrac{1}{1+\sqrt{2x^2+1}}\)+\(\dfrac{\sqrt{x^2+1}}{1+\sqrt{x^2+1}}\)-\(\dfrac{32}{\sqrt{2\sqrt{2x^2+1}\left(1+\sqrt{2x^2+1}\right)+2\sqrt{\dfrac{1}{x^2+1}}\left(1+\sqrt{\dfrac{1}{x^2+1}}\right)+8}}\)= -7
3)\(2x^2\left(x-1\right)+x=\left(x-1\right)\sqrt{2x\left(x^2-x+2\right)}+6\)
\(\left(\dfrac{2x+1}{\sqrt{x^3-1}}-\dfrac{\sqrt{x}}{x+\sqrt{x+1}}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(\dfrac{\sqrt{x-2\sqrt{x-1}+}\sqrt{x+2\sqrt{x-1}}}{\sqrt{\dfrac{1}{x^2}-\dfrac{2}{x}+1}}\)
\(\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
Mí bạn giải giúp mik bài này nhé!:))))))))))))))))))))))))))))))ARIGATO MÍ BẠN NHIW!!!!!!!!!!:)))))))))))))))))))))))))))))))))
Rút gọn:
\(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
Giải::
ĐK: x khác +- 1
\(M=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}\right]\cdot\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)
\(=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)}{\left(1-\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)}{1-\sqrt{x}+x}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)
\(=1-\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)}{2}+\dfrac{-x\left(1-\sqrt{x}\right)^2}{2\left(1-\sqrt{x}+x\right)}\right]\)
rồi làm sao nữa ak?? Tớ có quy đồng lên, tính sơ sơ rồi nhưng thấy kq không gọn.
Câu b là : tìm các số nguyên x để M cũng là số nguyên . Nên tớ nghĩ kq sẽ gọn.
NHỜ MẤY CAO NHÂN RA TAY GIÚP VỚI NHAK ^^!
Rút gọn biểu thức:
E=\(\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right)\times\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}vớix\ge0,x\ne1\)
M=\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right)\div\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2}{a-1}\right)vớia\ge0,a\ne1\)
Lm nhanh giúp mk nhé! Thank!
rút gọn biểu thức
a) A=\(\dfrac{\sqrt{x}-3}{\sqrt{x-2}}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}vớix\ge0,x\ne4,x\ne1\)
b)\(\left(\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\div\dfrac{\sqrt{x}-1}{2}vớix>0,x\ne1\)
Giải các phương trình:
a. \(3\sqrt{2x}-\dfrac{1}{3}\sqrt{18x}=\sqrt{24}\)
b. \(\sqrt{x^2+10|x|+25}=2|x|+1\)
1. giải các phương trình :
a) $\frac{\sqrt[2]{2x-3}}{ \sqrt[2]{x-1}}$ = 2
b) x-5 $\sqrt[2]{x-2}$ = -2
2. chứng minh bất đẳng thức :
a) $\frac{a^{2}+3}{ \sqrt[n]{a^{2}+2}}$>2
b) $\sqrt[2]{a}$ + $\sqrt[2]{b}$ $\leq$ $\frac{a}{\sqrt[2]{b}}$ + $\frac{b}{\sqrt[2]{a}}$
với a >0; b>0
Giải phương trình
a) \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=6-4x-4x^2\)
b) \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)