Điều kiện \(x\in R\)
Lập phương 2 vế phương trình đã cho ta được :
\(2x-1+x-1+3\sqrt[3]{2x-1}\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)=3x-1\)
\(\Leftrightarrow\sqrt[3]{2x-1}\sqrt[3]{x-1}\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)=1\)
mà \(\sqrt[3]{2x-1}+\sqrt[3]{x-1}=\sqrt[3]{3x+1}\) nên ta có :
\(\sqrt[3]{2x-1}\sqrt[3]{x-1}\sqrt[3]{3x+1}=1\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)\left(3x+1\right)=1\)
\(\Leftrightarrow x\in\left\{0;\frac{7}{6}\right\}\)
Thử lại ta thấy \(x=\frac{7}{6}\) là nghiệm duy nhất của phương trình đã cho