ĐKXĐ: \(\left\{{}\begin{matrix}x-4\ge0\\4-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\le4\end{matrix}\right.\) \(\Leftrightarrow x=4\)
Thay \(x=4\) vào pt thấy thỏa mãn
Vậy pt có nghiệm duy nhất \(x=4\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-4\ge0\\4-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\le4\end{matrix}\right.\) \(\Leftrightarrow x=4\)
Thay \(x=4\) vào pt thấy thỏa mãn
Vậy pt có nghiệm duy nhất \(x=4\)
giải phương trình \(\sqrt{x-2}+\sqrt{x-4}=0\)
Giải các phương trình :
a) \(\dfrac{3x^2+1}{\sqrt{x-1}}=\dfrac{4}{\sqrt{x-1}}\)
b) \(\dfrac{x^2+3x+4}{\sqrt{x+4}}=\sqrt{x+4}\)
c) \(\dfrac{3x^2-x-2}{\sqrt{3x-2}}=\sqrt{3x-2}\)
d) \(2x+3+\dfrac{4}{x-1}=\dfrac{x^2+3}{x-1}\)
Giải các phương trình :
a) \(\sqrt{x+1}+x=\sqrt{x+1}+2\)
b) \(x-\sqrt{3-x}=\sqrt{x-3}+3\)
c) \(x^2-\sqrt{2-x}=3+\sqrt{x-4}\)
d) \(x^2+\sqrt{-x-1}=4+\sqrt{-x-1}\)
Viết điều kiện của các phương trình sau :
a) \(\sqrt{2x+1}=\dfrac{1}{x}\)
b) \(\dfrac{x+2}{\sqrt{2x^2+1}}=3x^2+x+1\)
c) \(\dfrac{x}{\sqrt{x-1}}=\dfrac{2}{\sqrt{x+3}}\)
d) \(\dfrac{2x+3}{x^2-4}=\sqrt{x+1}\)
BT : tìm nghiệm của các phương trình sau:
a,
\(x-\sqrt{x-3}=\sqrt{3-x}+x\)
b,\(\sqrt{-x^2+4x-4}=x^2-4\)
c,\(\sqrt{x}-\sqrt{1-x}=\sqrt{-x-2}\)
d,\(x+2\sqrt{x+1}=1-\sqrt{-x-1}\)
e,\(x^2+\sqrt{2-x}=\sqrt{2-x}+9\)
CHUYÊN ĐỀ GIẢI PHƯƠNG TRÌNH
a, \(\sqrt{2x-1}+\sqrt{x^2+3}=4-x\) f, \(2x^2-11x+23=4\sqrt{x+1}\)
b, \(\sqrt{x^2+x+1}=\sqrt{x^2-3x-1}+2x+1\) g, \(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
c, \(\left|x-16\right|^4+\left|x-17\right|^3=1\) h, \(9\left(\sqrt{4x+1}-\sqrt{3x-2}\right)=x+3\)
d, \(\left(x+1\right)\sqrt{x+2}+\left(x+6\right)\sqrt{x+7}=x^2+7x+12\)
e, \(\left(4x^3-x+3\right)^3-x^3=\frac{3}{2}\)
Câu 1. Giải các phương trình, hệ phương trình sau:
a. \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
b. \(\left\{{}\begin{matrix}x^2-xy-2=0\\x^2+y^2+2x+2y-2=0\end{matrix}\right.\) (x,y \(\in R\))
Giải phương trình :
\(-x+3=2\sqrt{1-x}-\sqrt{1+x}+3\sqrt{1-x^2}\)
giải phương trình :
\(\sqrt{\left(x-3\right)^2\left(5-3x\right)}+2x=\sqrt{3x-5}+4\)