\(9x^2+2\sqrt{x^2-4}=36\left(x\le-2;x\ge2\right)\\ \Leftrightarrow2\sqrt{x^2-4}+9x^2-36=0\\ \Leftrightarrow2\sqrt{x^2-4}+9\left(x^2-4\right)=0\\ \Leftrightarrow\sqrt{x^2-4}\left(2+9\sqrt{x^2-4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-4=0\\\sqrt{x^2-4}=-\dfrac{2}{9}\left(vô.nghiệm\right)\end{matrix}\right.\\ \Leftrightarrow x^2-4=0\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)