ta có
5x^2+9y^2-12xy+8-48y+24x+72=0
<=>x^2-8x+16 + 4x^2+9y^2-12xy-48y+32x+64=0
<=> (x-4)^2+(2x-3y+8)^2=0
do(x-4)^2 ;(2x-3y+8)^2 \(\ge0\)
nên \(\left\{\begin{matrix}\left(x-4\right)^2=0\\\left(2x-3y+8\right)^2=0\end{matrix}\right.\)
<=> x=4 ;y=5,(3) (loại)
Vậy ko tồn tại cặp nghiệm nguyên